
JavaScript
Method

Modification
Aspect Oriented Function Composition

webtechconf - Munich, October 30th 2013 - /

Frontend Engineer at

Peter Seliger @petsel

XING AG

Agenda
Method Modification/Modifiers - Why?

Aspect Oriented Programming (AOP) in JavaScript - Why?

Basic Method Modifiers vs True Aspect Oriented Systems.

Questions / Live Demo

Thoughts about how to adopt the Principles of AOP to

JavaScripts Dynamic and Functional Nature.

Joinpoint, Pointcut, Advice and Aspect from a

JavaScript Point of View.

Additional Features that could be provided.

API of an already operating AO System (sneak preview).

Method Modification/Modifiers

Method Modification/Modifiers - Why?

There are cases where one does not own the code of a

method that's functionality has to be modified ...

e.g. enriching an existing implementation with additional

behavior and influencing the control flow of this new

.

This is the point one is in need of a set of basic AOP inspired

method modifiers like

Function.prototype[before|after|around]

Also if one uses

patterns like ...

with implementations that introduce competing methods,

 can be handled easier by such modifiers.

function composition

Function Based Object/Type Composition

Traits and Mixins

resolving conflicts

Method Modification/Modifiers - Why?

example - enriching an existing implementation with additional
behavior and influencing its control flow.

var requestBasketUpdate = function (evt, onSuccess) {

 var

 control = evt.target,

 form = control.form

 ;

 showMiniBasket();

 LightboxController.switchOnLoadingState();

 $.ajax({

 cache : false,

 url : form.action,

 type : form.method.toUpperCase(),

 data : $(form).serialize(),

 dataType : "text",

 success : onSuccess.before(

 LightboxController.switchOffLoadingState

).after(function () {

 timeoutIdMiniBasket = set_timeout(hideMiniBasket, 60000);

 }),

Method Modification/Modifiers

Function.prototype.before

Function.prototype.before = function (behaviorBefore, target) {
 var proceedAfter = this;

 return function () {
 var args = arguments;

 behaviorBefore.apply(target, args);
 return proceedAfter.apply(target, args);
 };
};

var hi = function () {console.log("hi");};
var ho = function () {console.log("ho");};

hi(); // "hi"
ho(); // "ho"

var hohi = hi.before(ho);
var hiho = ho.before(hi);

Method Modification/Modifiers

Function.prototype.after

Function.prototype.after = function (behaviorAfter, target) {
 var proceedBefore = this;

 return function () {
 var args = arguments;

 proceedBefore.apply(target, args);
 return behaviorAfter.apply(target, args);
 };
};

var he = function () {console.log("he");};

he(); // "he"
ho(); // "ho"

var heho = he.after(ho);
var hohe = ho.after(he);

heho(); // "he", "ho"

Method Modification/Modifiers

Function.prototype.around

Function.prototype.around = function (behaviorAround, target) {
 var proceedEnclosed = this;

 return function () {
 return behaviorAround.call(target, proceedEnclosed,
 behaviorAround, arguments, target);
 };
};

var hehiho = hi.around(function (proceed, around, args, target) {

 he();
 proceed();
 ho();

 console.log("proceed : ", proceed);
 console.log("around : ", around);
 console.log("args : ", args);
 console.log("target : ", target);

Aspect Oriented Programming
in JavaScript

Aspect Oriented Programming (AOP) in
JavaScript - Why?

Aspect Oriented Programming (AOP) in JavaScript - Why?

Basic Modifiers vs True AO Systems

Pure Method Modifying ...

relies on direct access to every possible modifiable method.

needs to be done explicitly for every identified method .

lacks abstraction for the 2 last mentioned shortcomings.

Thus making modularized code reuse of additionally to be

wrapped behavior not that handy.

is an appealing approach for less complex tasks.

should be seen as pre-stage for AO Systems that have to

provide both abstraction and support for better code reuse.

Questions?
Live Demo

open
open dom inspector/console
make sure that popups are allowed
throw the code that has been linked beneath onto the console
play with the given example as adviced in the bottom most
comments

gist: (raw)
gist:

twitter.com

ao module dependencies

proof of concept - example: log twitter api activities

modification.ao - JavaScript implementation of an AO

System

Aspect Oriented Programming in JavaScript

Thoughts about how to adopt the
Principles of AOP to JavaScripts Dynamic

and Functional Nature

runtime based only and not using any kind of JavaScript
"transpilers" or JavaScript build tools for "code weaving" as in
e.g. AspectJ.
thus being forced focusing on what ES3 language core does
provide.

Thoughts about how to adopt the Principles of AOP to
JavaScripts Dynamic and Functional Nature

implementation of prototypal method modifiers e.g. around,

before, after, afterThrowing, afterReturning, as

kind of a minimal AOP influenced base set that already

supports library (framework) agnostic modification of

function based control flow by just wrapping additional

behaviors (advice handlers) around existing

methods(functions).

clarify role of Joinpoint, Pointcut, Advice and Aspect;

especially from this point of view of what makes them distinct

from existing approaches in compiled and/or non dynamic

and/or non functional programming languages.

Thoughts about how to adopt the Principles of AOP to
JavaScripts Dynamic and Functional Nature

example code (will be explained)

// [VariationsController] depended method modification
SubmitController.isAnyToSubmit = SubmitController.isAnyToSubmit
 .around(function (isAnyToSubmit, interceptor, args, target) {

 var evt = args[0];
 evt.isColorChanged = true;

 return isAnyToSubmit.call(target, evt); // proceed
 })
;

// [SubmitController] specific functionality
SubmitController.isAnyToSubmit = function (evt) {
 var isChecked =
 evt.isColorChanged
 || sizeRadioInputs.toArray().some(function (elm/*, idx, arr*/) {

 return elm.checked;
 })
 ;
 if (isChecked) {
 /*
 ... submit specific stuff ...

Thoughts about how to adopt the Principles of AOP to
JavaScripts Dynamic and Functional Nature

Joinpoint

A Joinpoint in JavaScript always needs to feature both a

method that is bound to an object and this very object itself

(regardless of either this couple is locally scoped or not). One

might even think about a label that optionally gets assigned to

a joinpoint.

Thus a joinpoint will be constructed at least from a method's

name and this method's target object.

/*var jpIsAnyToSubmit = */ao.Joinpoint.add({
 target : SubmitController
 methodName : "isAnyToSubmit",
//label : "controllers.SubmitController.isAnyToSubmit",
});

Thoughts about how to adopt the Principles of AOP to
JavaScripts Dynamic and Functional Nature

Pointcut

A Pointcut in JavaScript always should be able to return a
collection of joinpoints that are filtered according to certain
criteria.
Thus a pointcut explicitly will be constructed from its filter
method.

var pcIsAnyToSubmit = ao.Pointcut.add({

//id : "isAnyToSubmit", // if omitted UUID will be generated

 filter : function (jp) {

 return (jp.getMethodName() == "isAnyToSubmit");

 //return (jp.getLabel().indexOf("...") >= 0);

 //return (jp.getTarget() === ...);

 }

});

Thoughts about how to adopt the Principles of AOP to
JavaScripts Dynamic and Functional Nature

Advice

An Advice in JavaScript always should feature both a method
that defines behavior (or could be seen as advice handler) and
a named qualifier or type.
Thus an advice will be constructed from a qualifier and a
method that gets associated with that qualifier.

var avColorChangedVariant = ao.Advice.add({
//id : "colorChangedVariant", // if omitted UUID will be generated
 type : "around",
 handler : function (proceed, handler, args, target/*, joinpoint*/) {
 var evt = args[0];
 evt.isColorChanged = true;
 return proceed.call(target, evt);
 }
});

Thoughts about how to adopt the Principles of AOP to
JavaScripts Dynamic and Functional Nature

Aspect

An Aspect in JavaScript needs to feature just a sole function

that enables folding of advices and pointcuts within it's

function body.

Thus an aspect has to be constructed from a callback function

that's first argument is a method that links advices to

pointcuts and that's second argument references the AO

System itself.

var asColorChangedVariant = ao.Aspect.add({
//id : "colorChangedVariant", // if omitted UUID will be generated
 handler : function (linkAdviceToPointcut, ao) {
 linkAdviceToPointcut(avColorChangedVariant, pcIsAnyToSubmit);
 }
});

Thoughts about how to adopt the Principles of AOP to
JavaScripts Dynamic and Functional Nature

Additional Notes

In order to take advantage of JavaScripts dynamic nature it

should be allowed to alter the whole system's control flow at

any time from any point e.g.

advices do alter the system's control flow just by calling one

of every advices two methods either confirm or deny.

add or remove joinpoints, pointcuts, advices regardless of

how many aspects are currently confirmed or denied.

switching the whole AO System off and on again.

Thoughts about how to adopt the Principles of AOP to
JavaScripts Dynamic and Functional Nature

»modification.ao«

(just in order to get a glimpse of its API)

var ao = require("modification.ao") // aspect oriented system

// static properties

ao.Joinpoint // [Object] // module

ao.Pointcut // [Object] // module

ao.Advice // [Object] // module

ao.Aspect // [Object] // module

// static methods

ao.isOff // [Function]:true|false

ao.isOn // [Function]:true|false

ao.off // [Function]:void

ao.on // [Function]:void

ao.reboot // [Function]:void

ao.Joinpoint.add // [Function]:[Joinpoint]|undefined|false

ao.Joinpoint.remove // [Function]:[Joinpoint]|undefined|false

Questions?

Thank You

PDF Handout

